
xtewreg: Estimating the errors-in-variables
model using high-order cumulants and moments

Timothy Erickson
Bureau of Labor Statistics

Washington, DC
Erickson.Timothy@bls.gov

Robert Parham
University of Rochester

Rochester, NY
robert.parham@simon.rochester.edu

Toni M. Whited
University of Michigan

Ann Arbor, MI
twhited@umich.edu

Abstract. We consider a multiple mismeasured regressor errors-in-variables (EIV)
model. We present xtewreg, a command for using two-step generalized method of
moments (GMM) and minimum distance estimators that exploit overidentifying
information contained in high-order cumulants or moments of the data. The com-
mand supports either cumulant or moment estimation, internal support for the
bootstrap with moment condition recentering, an arbitrary number of mismea-
sured regressors and perfectly measured regressors, and cumulants or moments up
to an arbitrary degree. We also demonstrate how to use the estimators in the
context of a corporate leverage regression.
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1 Introduction

We present the Stata command xtewreg for implementing the estimators in Erickson

and Whited (2000, 2002, 2012), and Erickson et al. (2014) for the classical errors-in-

variables (EIV) model. The model is of a multiple linear regression in which any number

of the explanatory variables can be measured with an additive error. The estimators

produce consistent regression slope estimates by exploiting information contained in

the third- and higher-order cumulants or moments of the data. Such estimators are

of interest because ordinary least squares (OLS) is inconsistent when the independent
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variables of a linear regression are replaced with error-laden measurements or proxy

variables. Typically, researchers address this issue by finding additional observable

variables that can serve as instruments, but in many situations no such variables are

available. Consistent estimators based on the original, unaugmented set of observable

variables are therefore potentially quite valuable.

The article proceeds as follows: We start with a description of the EIV model and

the moment and cumulant estimators in Section 2. In section 3, we describe the xtewreg

command. Section 4 contains a demonstration of the use of the xtewreg command.

2 Background

This section draws from Erickson and Whited (2002) and Erickson et al. (2014) to sketch

the errors-in-variables model and the high-order moment and cumulant estimators. For

details, see Erickson and Whited (2002) and Erickson et al. (2014).

2.1 Notation and Model

Let (yi, xi, zi), i = 1, . . . , n, be a sequence of observable vectors, where xi ≡ (xi1, . . . , xiJ)

and zi ≡ (1, zi1, . . . , ziM ). Let (ui, εi, χi) be a sequence of unobservable vectors, where

χi ≡ (χi1, . . . , χiJ) and εi ≡ (εi1, . . . , εiJ). We consider a multiple-regressor version

of the classical errors-in-variables model, where (yi, xi, zi) is related to (ui, εi, χi) and
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unknown parameters α ≡ (α0, α1, . . . , αM )
′

and β ≡ (β1, . . . , βJ)′ according to:

yi = ziα+ χiβ + ui (1)

xi = χi + εi. (2)

Equation (1) is a linear regression model containing J regressors χi that are imperfectly

measured by xi according to (2), and M perfectly measured regressors, zi. The assump-

tion of unit slopes and zero-valued intercepts in (2) is required to identify the parameters

in (1). We assume the variables in (1) and (2) satisfy the following assumptions:

Assumption 1. (i) (ui, εi, χi, zi), i = 1, . . . , n, is an i.i.d. sequence; (ii) ui and the

elements of εi, χi, and zi have finite moments of every order; (iii) (ui, εi) is independent

of (χi, zi), and the individual elements in (ui, εi) are independent of each other; (iv)

E(ui) = 0 and E(εi) = 0; (vi) E [(χi, zi)
′(χi, zi)] is positive definite.

Before sketching the estimators, we partial out the perfectly measured variables,

and rewrite the model in terms of population residuals. The 1 × J residual from the

population linear regression of xi on zi is xi − ziµx, where:

µx ≡ [E(z′izi)]
−1
E(z′ixi) . (3)

The corresponding 1× J residual from the population linear regression of χi on zi is:

ηi ≡ χi − ziµx, (4)

where µx appears because (2) and the independence of εi and zi imply

µx = [E(z′izi)]
−1
E[z′i (χi + εi)] = [E(z′izi)]

−1
E(z′iχi) .
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Note that subtracting ziµx from both sides of (2) gives:

xi − ziµx = ηi + εi. (5)

Similarly, the residual from the population linear regression of yi on zi is yi − ziµy,

where µy ≡ [E(z′izi)]
−1
E(z′iyi). Equation (1) and the independence of ui and zi imply:

µy = [E(z′izi)]
−1
E[z′i (ziα+ χiβ + ui)]

= α+ µxβ. (6)

Therefore, subtracting ziµy from both sides of (1) gives:

yi − ziµy = ηiβ + ui. (7)

2.2 Estimators

Both the cumulant and moment estimators are based on a two-step approach to esti-

mation, where the first step is to substitute the least squares estimates

µ̂x ≡

[
n∑

i=1

z′izi

]−1 n∑
i=1

z′ixi

µ̂y ≡

[
n∑

i=1

z′izi

]−1 n∑
i=1

z′iyi

into (5) and (7), and the second step is to estimate β using sample cumulants or moments

of yi − ziµ̂y and xi − ziµ̂x.

Regarding the practical implementation of this step, it is important that the re-

searcher classify all possibly mismeasured variables as belonging to the vector χi, and
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not to the vector zi. Correct classification is important even if one or more of the mis-

measured variables is not of primary economic interest. If any mismeasured regressor is

classified as perfectly measured, then the ordinary least squares estimates, µ̂x and µ̂y,

will be biased. In this case, equations (5) and (7) will be misspecified.

Moments

The high-order moment estimators are based on moment conditions derived from (5) and

(7) by taking powers of these two equations, multiplying the results together and then

taking expectations of both sides. The resulting equations express observable higher

order moments and cross-moments of the data as nonlinear functions of β and moments

of unobservable variables, where these latter moments are treated as parameters. The

general form for these moment equations is given by:

E

(yi − ziµy)r0
J∏

j=1

(xij − ziµxj)
rj

 =

(8)∑
v∈V

∑
k∈K

av,k

 J∏
j=1

β
vj

j

E
 J∏

j=1

η
(vj+kj)
ij

 J∏
j=1

E
(
ε
(rj−kj)
ij

)E(uv0i ) ,

where v ≡ (v0, v1, . . . , vJ) and k ≡ (k1, ..., kJ) are vectors of nonnegative integers,

V ≡
{
v :
∑J

j=0 vj = r0

}
, K ≡

{
k :
∑J

j=1 kj ≤
∑J

j=0 rj , kj ≤ rj , j = 1, ..., J
}

, and

av,k ≡
r0!

v0!v1! · · · vJ !

J∏
j=1

rj !

kj !(rj − kj)!
.

A GMM estimator can then be constructed by using subsets of these moment con-

ditions, where the weight matrix is simply the covariance matrix of the observable
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moments on the left-hand side of (8), adjusted to account for the sampling variation

in the estimates of µx and µy. As explained in more detail in Erickson and Whited

(2002), it is natural to consider sets of equations based on moment up to a certain order

N = r0 + r1 + · · · + rJ , so the xtewreg command considers sets of moment equations

based on moments of orders 3, 4, 5, . . ..

We now describe a simple example of (8) that can be used to construct an estimator.

We consider the case of a single mismeasured regressor, so J = 1. First, we square (7),

multiply the result by (5), and take expectations of both sides, obtaining:

E
(
(yi − ziµy)2(xi − ziµx)

)
= β2E

(
η3i
)
. (9)

Similarly if we square (5), multiply the result by (7), and take expectations, we obtain:

E
(
(yi − ziµy)(xi − ziµx)2

)
= βE

(
η3i
)
. (10)

If β 6= 0 and E
(
η3i
)
6= 0, dividing (9) by (10) produces a consistent estimator for β:

β =
β2E

(
η3i
)

βE (η3i )

=
E
(
(yi − ziµy)2(xi − ziµx)

)
E ((yi − ziµy)(xi − ziµx)2)

. (11)

An estimator can be derived from (11) by replacing the population moments by sample

moments.

Cumulants

As shown in Erickson et al. (2014), the cumulant estimators are asymptotically equiva-

lent to the moment estimators, but they have a convenient closed form. The following
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outline of the estimators draws from Erickson et al. (2014). Let K(s0, s1, . . . , sJ) be

the cumulant of order s0 in yi − ziµy and sj in xij − ziµxj . The cumulant estimators

are based on the result from Geary (1942) that for any (s0, s1, . . . , sJ) containing two

or more positive elements, the following relationship between cumulants holds:

K(s0 + 1, s1, . . . , sJ) = β1K(s0, s1 + 1, . . . , sJ) + · · ·+ βJK(s0, s1, . . . , sJ + 1). (12)

There are an infinity of equations given by (12), one for each admissible vector (s0, s1, . . . , sJ).

Let

Ky = Kxβ (13)

denote a system of M equations of the form (12). If M = J and detKx 6= 0, then it is

possible to solve for β.

We consider possibly overidentified estimators for β, so M ≥ J . Let K̂y and K̂x be

consistent estimates of Ky and Kx, and let Ŵ be a symmetric positive definite matrix.

The estimator β̂ solves:

β̂ ≡ argminb∈<J

(
K̂y − K̂xb

)′
Ŵ
(
K̂y − K̂xb

)
. (14)

Because K̂y − K̂xb is linear in b, (14) has the solution

β̂ =
(
K̂ ′xŴ K̂x

)−1
K̂ ′xŴ K̂y, (15)

whenever K̂x has full column rank. As in the case of the moment estimators, we

consider estimators based on sets of cumulant equations up to a certain integer order,

N = s0 + s1 + . . .+ sJ .
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2.3 Identifying assumptions

Both the cumulant and moment estimators obtain identification from the third and

higher order moments or cumulants of the regression variables. In particular, as shown

in Erickson and Whited (2002), identification requires that the distribution of η satisfies

E
[
(ηic)

3
]
6= 0 for every vector of constants c = (c1, ..., cJ) having at least one nonzero

element. For practical problems, this requirement boils down to having nonnormally dis-

tributed mismeasured regressors. An example of this requirement can be seen intuitively

in equation (11), which contains the third moment of ηi in the denominator. Without

a skewed distribution, this particular third-order moment estimator is undefined. The

assumption of nonnormality clearly limits the applicability of these estimators. For in-

stance, asset returns are often approximately normally distributed, and many aggregate

variables are often approximately lognormally distributed, and typically expressed as

natural logarithms. In both of theses cases, the cumulant or moment estimators are

unlikely to be of use. However, in many microeconometric settings, especially those in

corporate finance and accounting, many regression variables are plausibly nonnormally

distributed.

2.4 Other estimates and test statistics

Both the moment and cumulant estimators can produce estimates of the coefficients on

the perfectly measured regressors, α, which can be recovered from the identity (6). The

estimators can also produce estimates of the population coefficient of determination for
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(1), which can be written as:

ρ2 =
µ′yvar (zi)µy + β′var (ηi)β

µ′yvar (zi)µy + β′var (ηi)β + E (u2i )
. (16)

Similarly, the estimators can produce an estimate of the population coefficients of de-

termination for (2):

τ2j =
µ′xjvar (zi)µxj + var (ηij)

µ′xjvar (zi)µxj + var (ηij) + E
(
ε2ij
) . (17)

In (17), the j subscript refers to the jth mismeasured regressor. The standard errors

for α, ρ2, and τ2 are calculated by stacking the influence functions for their various

components to obtain the covariance matrix of these components and then using the

delta method.

Finally, except for the case of the third-order moment estimator with one mismea-

sured regressor, all of the estimators included in xtewreg are overidentified. Both the

cumulant and moment estimators are accompanied by the standard Hansen-Sargan test

statistic for the overidentifying restrictions.

3 The xtewreg command

3.1 Syntax

xtewreg depvar misindepvars
[

indepvars
] [

if
] [

in
]

, maxdeg(#)
[

mismeasured(#) method(string) panmethod(string) bxint(numlist)

centmom(string) hascons nocons noprn
]

Here, misindepvars are independent variables assumed to be mismeasured, and indep-

vars are independent variables assumed to be perfectly measured. For more than one
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mismeasured variable, use the mismeasured() option to specify the number of mismea-

sured independent variables.

3.2 Options

maxdeg(#) sets the highest order of cumulants/moments to use. The minimum value

is 3. Very high values (above 8) are not advised, as the computational time for these

models increases sharply with maxdeg. xtewreg does not provide a default value for

maxdeg(). This choice is left to the researcher and is an empirical choice. Generally

speaking, the more data one has, the higher the order moment or cumulant one can

use. A reasonable starting value for applied work is maxdeg(5), but the sensitivity

of the estimates to different values of maxdeg() should be explored on a case by case

basis.

mismeasured(#) declares the number of mismeasured independent variables in the

model. The default value is 1. xtewreg uses this value to distinguish between

misindepvars and indepvars. The first mismeasured() independent variables are

taken to be misindepvars, and the rest are taken to be indepvars.

method(string) chooses whether to use high-order cumulants (cml, the default) or high-

order moments (mom). While xtewreg supports both high-order cumulant and mo-

ment estimators, using high-order moment estimators is not advised because the

high-order moment estimators require a numerical minimization procedure when

computing the GMM objective function, whereas the cumulant-based estimators are

linear and naturally have a closed-form solution.
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panmethod(string) chooses whether to perform panel estimation by using a clustered

weight matrix used for the cumulant or moment estimators (cls, the default) or by

combining cross-sections using a minimum distance estimator (cmd). While xtewreg

supports panel data using both clustered weighting matrices and classical minimum

distance, classical minimum distance can entail long computation time for panels

with a large time dimension.

bxint(numlist) is a list of starting values for the coefficients on misindepvars. This

option requires setting method(mom). The high-order moment estimators require

numerical minimization of a nonlinear objective function and thus require starting

values. The default (if bxint() is omitted) is to use both the OLS coefficients and the

coefficients from maxdeg(3) as possible starting values. If there are J misindepvars

and one wishes to provide K sets of possible starting values, numlist should be of

order J ×K.

centmom(string) is a directive supporting the centering of the moment conditions for

bootstrap computation of t-test and overidentification test critical values. The op-

tion takes one of the values [set, use, reset]. centmom(set) saves the value of

the moment conditions for the entire sample, and should be used before using the

bootstrap command. centmom(use) should be specified when using bootstrap

with xtewreg. centmom(reset) resets the value of saved moment conditions, and

is rarely used.

hascons indicates that indepvar already contains a constant variable, and so a constant

should not be added by the estimation procedure.
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nocons requires that a constant will not be added by the estimation procedure. Note

that when this option is used, the researcher should verify all variables included in

the estimation have mean zero, or regression results will be inconsistent.

noprn suppresses the printing of the results table.

3.3 Saved Results

xtewreg saves the following in e():

Scalars
e(N) number of observations
e(rho) estimate of ρ2

e(SErho) standard error for ρ2

e(Jstat) Sargan-Hansen J statistic
e(Jval) p-value for Jstat
e(dfree) degrees of freedom for Jstat
e(obj) minimized value of the GMM ob-

jective function

Macros
e(bxint) initial guesses for β
e(method) method used for estimation
e(panmethod) panel method used for estima-

tion

Matrices
e(b) regression coefficients
e(V) covariance matrix for e(b)
e(serr) standard errors for e(b)
e(tau) estimates of proxy accuracy, τ2

e(SEtau) standard errors for τ2

e(vcrhotau) covariance matrix for ρ2 and τ2j
e(w) weighting matrix used for esti-

mation

Additionally, xtewreg sets two global MATA variables:

EWSAVEDprb holds the problem structure (i.e. the Symbolic estimation equations) for

a given number of mismeasured independent variables J and a given maximum cumu-

lant/moment degree M . Generating these equations is computationally intensive, and

xtewreg saves the last estimated problem structure to optimize repeated estimations

of the same problem structure, such as when using the bootstrap. When xtewreg is
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called with a problem structure different from the one last used, it will notify by print-

ing the message “Problem structure different from last executed. Rebuilding problem.”

xtewreg will rebuild and save the new Symbolic estimating equations.

EWSAVEDfCent holds the centered moment conditions generated by specifying centmom(set)

and used when specifying centmom(use).

3.4 The Symbolic class

To implement a moment system of arbitrary degree M and with arbitrarily many mis-

measured variables J , xtewreg needs to be able to construct a large set of equations of

the type described by the general form in 8. These equations then need to be evaluated

for the data provided to calculate the moments and cumulants. To construct these

equations, we implement a symbolic algebra class in MATA, Symbolic, which supports

the complete algebra over the polynomial ring with arbitrarily many indeterminates

and with coefficients from the real field. The class is similar in capabilities to Stata’s

polyeval command, with two important differences: it is a stateful MATA class, which

allows superior encapsulation, and it supports arbitrarily many indeterminates (e.g.

polynomials of the form α1x1 +α2x2 +α3x1x
2
2), whereas polyeval only supports a sin-

gle indeterminate (i.e. x is a scalar, not a vector). Further discussion of the Symbolic

class is outside the scope of this paper, but a stand-alone version of the Symbolic class

is available from the authors upon request.

The EWSAVEDprb problem structure contains the set of Symbolic equations corre-

sponding to the current degree M and mismeasured variable count J , and these equa-
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tions can then be re-evaluated given a set of data. This way, the problem structure is

only constructed once, and can then be evaluated multiple times given different data.

4 Investment and leverage example

A firm leverage dataset from Compustat is included with this distribution. It contains

over 121, 000 firm-year observations for approximately 11, 000 firms. We include the

following variables, defined in terms of Compustat mnemonic variable names:

• gvkey - The Compustat unique firm identifier.

• fyear - The firm fiscal year.

• lever - Firm leverage, defined as (DLTT+DLC)/AT.

• mtb - Firm market-to-book ratio, where the numerator is AT+PRCC F times

CSHO minus CEQ minus TXDB, and the denominator is AT.

• tangib - Fixed assets, defined as PPENT/AT.

• logsales - The natural log of firm sales (SALE).

• oi - Firm operating income, defined as OIBDP/AT.

with all cash items provided in term of deviations from firm means and year means.

First, we provide a summary of the EPW.dta dataset:

. use "EPW.dta", clear

. xtset gvkey
panel variable: gvkey (unbalanced)

. summarize fyear gvkey lever mtb tangib logsales oi
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Variable Obs Mean Std. Dev. Min Max

fyear 121733 1991.063 11.70219 1970 2011
gvkey 121733 21855.43 35329.08 1000 287462
lever 121733 -1.89e-10 .1482152 -.9990212 .9677935

mtb 121733 3.92e-10 .6669923 -9.285594 12.85808
tangib 121733 -2.04e-11 .1167422 -.8033313 .7093889

logsales 121733 8.19e-12 .5162762 -6.318236 4.589146
oi 121733 1.78e-10 .0930696 -1.030859 .6828895

We begin by estimating the relation between leverage and market-to-book and tan-

gibility using an OLS regression. The market-to-book ratio is a proxy for firm growth

opportunities, and the ratio of fixed to total assets is a proxy for asset tangibility. We

cluster standard errors at the firm level, and use the nocons option in the regression as

the dependent variable was de-meaned:

. regress lever mtb tangib , vce(cluster gvkey) nocons

Linear regression Number of obs = 121733
F( 2, 10795) = 497.72
Prob > F = 0.0000
R-squared = 0.0390
Root MSE = .14529

(Std. Err. adjusted for 10796 clusters in gvkey)

Robust
lever Coef. Std. Err. t P>|t| [95% Conf. Interval]

mtb -.0242871 .0011228 -21.63 0.000 -.0264881 -.0220862
tangib .2049681 .0098809 20.74 0.000 .1855996 .2243365

Compare these results with those of xtewreg, assuming both regressors are measured

with error, as indicated by the mismeasured(2) option:

. xtewreg lever mtb tangib , maxdeg(5) mismeasured(2) nocons

5(2) EIV results N = 121733
Rho^2 = 0.171

(0.009)

lever Coef. Std. Err. z P>|z| [95% Conf. Interval]

mtb -.0339095 .0037329 -9.08 0.000 -.0412259 -.0265932
tangib 1.185099 .0373822 31.70 0.000 1.111831 1.258367

Tau1^2: 0.570 (0.083)
Tau2^2: 0.172 (0.010)
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Sargan-Hansen J statistic: 210.285 (p=0.000, d=20)

Note that the coefficient on tangibility rises by a factor of six, and the coefficient

of determination (ρ2) for the model rises considerably. These are explained by the

estimates of the errors in market-to-book and tangibility, measured by the τ21 and τ22

coefficient. These errors, when ignored in OLS, leads to attenuation bias. Further note

that the estimation uses cumulants and a clustered weighting matrix (the defaults), and

we set maxdeg(5) for an estimator based on cumulants up to fifth order.

Next, we add several perfectly measured controls and estimate the model using an

OLS regression. We again cluster standard errors at the firm level:

. regress lever mtb tangib logsales oi , vce(cluster gvkey) nocons

Linear regression Number of obs = 121733
F( 4, 10795) = 530.73
Prob > F = 0.0000
R-squared = 0.0728
Root MSE = .14272

(Std. Err. adjusted for 10796 clusters in gvkey)

Robust
lever Coef. Std. Err. t P>|t| [95% Conf. Interval]

mtb -.0149454 .0011126 -13.43 0.000 -.0171263 -.0127645
tangib .1991992 .0099499 20.02 0.000 .1796956 .2187028

logsales .0394179 .0025019 15.76 0.000 .0345138 .0443221
oi -.2411662 .0092385 -26.10 0.000 -.2592753 -.2230571

Compare these results with those of xtewreg, assuming again that mtb and tangib

are measured with error:

. xtewreg lever mtb tangib logsales oi , maxdeg(5) mismeasured(2) nocons

5(2) EIV results N = 121733
Rho^2 = 0.199

(0.009)

lever Coef. Std. Err. z P>|z| [95% Conf. Interval]

mtb -.0318794 .0044092 -7.23 0.000 -.0405212 -.0232376
tangib 1.207097 .0378421 31.90 0.000 1.132928 1.281266

logsales .0579218 .0036609 15.82 0.000 .0507467 .065097
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oi -.0566342 .015969 -3.55 0.000 -.0879328 -.0253356

Tau1^2: 0.478 (0.080)
Tau2^2: 0.186 (0.010)
Sargan-Hansen J statistic: 245.977 (p=0.000, d=20)

Note the message printed by xtewreg regarding rebuilding the problem, as the pa-

rameters of the problem are different from those used during the latest call to xtewreg.

Note that the J-statistic for the test of overidentifying restrictions is quite large.

This result indicates a violation of one of the conditions in Assumption 1, with the

likely culprit being a regression error, ui, that is independent of the regressors, χi and

zi. The leverage regression we have chosen as an example, although widely used, likely

suffers from problems of omitted variables.

Repeating the estimation with maxdeg(8) so as to use all moments condition up to

degree 8 yields:

. xtewreg lever mtb tangib logsales oi , maxdeg(8) mismeasured(2) nocons
Problem structure different from last executed. Rebuilding problem.

8(2) EIV results N = 121733
Rho^2 = 0.204

(0.008)

lever Coef. Std. Err. z P>|z| [95% Conf. Interval]

mtb -.0241135 .0008971 -26.88 0.000 -.0258717 -.0223552
tangib 1.264688 .0079716 158.65 0.000 1.249064 1.280312

logsales .0599253 .0036729 16.32 0.000 .0527266 .0671239
oi -.061634 .0119372 -5.16 0.000 -.0850305 -.0382375

Tau1^2: 0.611 (0.066)
Tau2^2: 0.179 (0.008)
Sargan-Hansen J statistic: 1289.990 (p=0.000, d=96)



18 High-order cumulants and moments

4.1 Using bootstrap with xtewreg

To calculate the bootstrapped critical values for the test statistics, we need to recenter

the moment conditions for every bootstrap iteration (see Hall and Horowitz 1996, for

details). To do so, we first execute xtewreg on the entire dataset while setting the

centmom(set) option. Next, we prefix xtewreg with the bootstrap command, while

setting the centmom(use) option:

. xtewreg lever mtb tangib logsales oi , maxdeg(5) mismeasured(2) centmom(set) nocons

(output omitted)

. bootstrap t_mtb=(_b[mtb]/el(e(serr),1,1)) t_tangib=(_b[tangib]/el(e(serr),2,1)) ///
> t_logsales=(_b[logsales]/el(e(serr),3,1)) t_oi=(_b[oi]/el(e(serr),4,1)) , ///
> rep(100) seed(1337) cluster(gvkey) notable: ///
> xtewreg lever mtb tangib logsales oi , maxdeg(5) mismeasured(2) centmom(use) nocons
(running xtewreg on estimation sample)

Bootstrap replications (100)
1 2 3 4 5

.................................................. 50

.................................................. 100

Bootstrap results Number of obs = 121733
Replications = 100

command: xtewreg lever mtb tangib logsales oi, maxdeg(5) mismeasured(2) centmom(use) nocons
t_mtb: _b[mtb]/el(e(serr),1,1)

t_tangib: _b[tangib]/el(e(serr),2,1)
t_logsales: _b[logsales]/el(e(serr),3,1)

t_oi: _b[oi]/el(e(serr),4,1)

. estat bootstrap, p

Bootstrap results Number of obs = 121733
Replications = 100

command: xtewreg lever mtb tangib logsales oi, maxdeg(5) mismeasured(2) centmom(use) nocons
t_mtb: _b[mtb]/el(e(serr),1,1)

t_tangib: _b[tangib]/el(e(serr),2,1)
t_logsales: _b[logsales]/el(e(serr),3,1)

t_oi: _b[oi]/el(e(serr),4,1)

(Replications based on 10796 clusters in gvkey)

Observed Bootstrap
Coef. Bias Std. Err. [95% Conf. Interval]

t_mtb -7.2302641 1.893839 1.009294 -7.611491 -3.683594 (P)
t_tangib 31.898225 -8.269736 1.3878318 20.88363 25.95456 (P)

t_logsales 15.821917 -4.489249 .97056268 9.338326 13.13195 (P)
t_oi -3.5465207 .7876053 .89791996 -4.257066 -1.154614 (P)

(P) percentile confidence interval
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Note that we use the bootstrap to calculate the critical value for the t-statistic, as

it is an asymptotically pivotal statistic (see Horowitz 2001, for details). Furthermore,

we use the percentile method to derive confidence intervals and p-values (by estat

bootstrap, p after executing bootstrap).
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