
Testing Q theory with financing frictions

Christopher A. Hennessya
∗
, Amnon Levyb, Toni M. Whitedc

aHaas School of Business, University of California, Berkeley, CA 94720-1900, USA
bMoody’s KMV, San Francisco, CA 94105-2625, USA

cSchool of Business, University of Wisconsin, Madison, WI 53706-1323, USA

Received 18 August 2003; received in revised format 26 July 2005; accepted 14 December 2005

Abstract
We develop a Q theory of investment under financing constraints. The firm invests and saves

optimally facing convex costs of external equity, overhang from outstanding debt, and collateral
constraints on new borrowing. Overhang and costs of external equity discourage investment.
Conversely, firms anticipating collateral constraints experience a side benefit from investing as
installed capital relaxes future constraints. Empirical tests support the model. Conditional on
average Q, investment is lower for equity issuers and for firms with large debt overhang. The
Kaplan and Zingales and the Whited and Wu indices are used as proxies for future collateral
constraints. Consistent with the model, both indices enter investment regressions positively.

JEL classification: G31; E22.
Keywords: Q theory; Investment; Financial frictions

We would like to thank an anonymous referee, John Leahy, and seminar participants at the University of

California, Berkeley, and the University of Wisconsin, Madison, for helpful comments.

∗Corresponding author contact information: Haas School of Business, University of California, Berkeley, CA
94720-1900. E-mail: hennessy@haas.berkeley.edu.



1. Introduction

The effect of financing imperfections on investment remains a topic of continued interest.1 The

workhorse structural model in this literature is the Q theory developed by Hayashi (1982), who

shows that marginal q is a sufficient statistic for investment when there are convex costs of

adjusting the capital stock. Of greater interest to empiricists is Hayashi’s proof that average Q,

which is observable, is equal to the inherently unobservable marginal q when profits are linear in

capital and financing is frictionless. Elegance aside, the utility of Hayashi’s model in empirical

corporate finance is limited, because it provides no guidance regarding structural tests for

financial market imperfections. For example, within the Q theory, what kind of investment

behavior distinguishes credit rationing from, say, lemons premia in equity markets?

Few workable alternatives to the Hayashi framework have been offered. The objective of this

paper is to formulate and test a Q theory of investment in the presence of financial frictions. The

model of Hayashi (1982) is extended to allow for uncertainty, a cash buffer-stock, collateral

constraints on intermediated bank loans, debt overhang arising from long-term public debt, and

convex costs of external equity. Some recent papers simulate dynamic structural models in which

the firm faces a similar set of frictions.2 The contribution of our model is twofold. First, in

contrast to simulation-based studies, we derive an easy-to-estimate optimality condition in which

investment is linear in the relevant variables. Second, we derive a relation between marginal and

average Q in a setting in which the firm finances optimally in the presence of a rich set of frictions.

An attractive feature of the model is that the empirical investment equation contains terms

that can be linked directly to each of the three distortions: convex costs of external equity,

collateral constraints, and debt overhang. The empirical section of the paper uses US firm-level

data to test three predictions related to the three frictions. The first prediction of the model is

that, conditionally, investment is decreasing in an interaction variable: average Q multiplied by

capital-normalized equity issuance. This prediction could run counter to casual intuition. After

1See Stein (2003) for a recent survey.
2See Gomes (2001), Cooper and Ejarque (2003), and Hennessy and Whited (2006).

1



all, firms tend to issue equity to finance large investments. However, average Q already captures

shocks to the investment opportunity set. The interaction variable captures the following effect.

Suppose firms A and B have the same investment opportunity set, but firm B has no cash on

hand and must float equity to fund its investment program. Convex costs of external equity raise

the marginal cost of each unit of capital acquired by firm B. Consequently, firm B invests less

than A. Consistent with the model, estimated coefficients on this interaction variable are always

negative and typically statistically significant. Further, correcting for measurement error in

observed Q increases the absolute magnitude of the coefficients three- to fivefold. The

measurement-error consistent estimates are also economically significant. For example, according

to our estimates, the median equity-issuing firm in our sample would increase investment by

approximately 5% if it were able to finance with internal funds.

The second prediction of the model could also run counter to intuition: ceteris paribus, firms

anticipating binding collateral constraints on future borrowing invest more today. For example,

consider a high Q firm anticipating valuable investment opportunities in the future. If this firm

has a high ratio of loans to tangible capital, lenders are reluctant to provide funds for these future

investments. For such a firm, installing capital today provides a spillover benefit, because this

capital serves as collateral for future loans. This spillover benefit increases investment incentives

at the margin.

We use the Kaplan and Zingales (hereafter, KZ, 1997) and Whited and Wu (hereafter, WW,

2006) indices to proxy for firms anticipating binding collateral constraints. The motivation is

similar to that provided by Baker, Stein, and Wurgler (2003), who use the KZ index to identify

equity dependent firms. First, both indices load in the right way onto firm characteristics

suggestive of binding collateral constraints. For example, both indices are increasing in proxies for

investment opportunities, increasing in financial leverage, and decreasing in internal funds.

Second, both indices have been used in other contexts so concern over data mining should be

assuaged. Consistent with the model, coefficients on the KZ and WW indices are always positive

and significant. The signs of these coefficients are also robust to correcting for measurement error
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in observed Q.

The final friction tested is the debt-overhang effect. The overhang correction variable is the

same as that derived by Hennessy (2004). The model presented in our paper is more general in

that it includes endogenous cash retention, credit rationing, and costs of external equity. The

theory predicts that overhang is most pronounced for firms with high leverage, high default

probabilities, and high lender recoveries in default. Intuitively, the overhang correction is intended

to pick up investment returns accruing to lenders as opposed to shareholders. Consistent with the

theory, the overhang correction always enters negatively, is always statistically significant, and is

robust to measurement error. Its magnitude is substantial. Our measurement-error consistent

estimates indicate that the elasticity of investment with respect to leverage for the median firm is

approximately -2. Because our model controls for other frictions that one might expect to be

correlated with the overhang correction, these results suggest that the findings in Hennessy (2004)

do not stem from omitted variables.

Hayashi (1985) and Chirinko (1987) pursue the same agenda undertaken in this paper,

endogenizing finance in Q theoretic models of investment and then relating marginal q to average

Q. These two models are more limited than the one here. The Hayashi (1985) model is essentially

the trade-off theory, because the only frictions incorporated are taxes and reduced-form

bankruptcy costs. The model of Chirinko (1987) does not allow for uncertainty. In addition,

Chirinko’s model loads financial market imperfections directly into the production function. For

example, in his model, debt reduces current period profits. However, we show that agency costs of

debt, such as the Myers (1977) overhang effect, are not isomorphic to foregone production today.

Instead, debt overhang causes shareholders to ignore future investment returns accruing after

default.

The distortions included in the model are motivated by a number of theoretical papers.

Convex costs of external equity are intended to capture the effect of informational asymmetries.

Myers and Majluf (1984) consider a firm with a single indivisible investment opportunity. They

show that asymmetric information can raise the cost of external equity if the firm is pooled with
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those of lower quality. If the lemons problem is sufficiently severe, good firms find it optimal to

pass up positive net present value (NPV) projects. Krasker (1986) presents a generalized model of

adverse selection in equity markets. In his model, as in our model, the firm chooses the scale of

new investment. Krasker shows that under rational expectations the shadow cost of external

equity is convex. The reasoning is as follows. As the firm issues more equity, beliefs about the

manager’s private information are revised downward, lowering the price paid for both marginal

and inframarginal shares.

Myers and Majluf (1984) argue that lemons premia associated with external equity create

incentives to use retained earnings and debt as sources of funds. However, the lemons problem

also limits the ability of firms to obtain debt financing on fair terms. Jaffee and Russell (1976)

and Stiglitz and Weiss (1981) present models of the intermediated loan process, showing that

banks could ration credit in response to adverse selection. These models are empirically relevant,

because bank debt is the most important source of financing. For example, within a random

sample of NYSE and Amex corporations, Houston and James (1996) find that the median

percentage of bank debt in total debt is 77%.

Concerns regarding moral hazard on the part of the borrower may also lead to credit

rationing. For example, Hart and Moore (1994) consider a setting in which the entrepreneur has

the option to repudiate a debt contract. By threatening to withdraw valuable human capital from

the project, the entrepreneur can extract debt forgiveness from the lender. Under any

renegotiation-proof debt contract, the maximum loan balance at any time is capped at the

liquidation value of physical assets. The Hart and Moore model seems to best fit bank debt, given

its assumption of frictionless bargaining between the firm and lender.

Almeida and Campello (2004) devise a novel empirical test of theories emphasizing the

importance of tangible capital in credit markets, e.g. Hart and Moore (1994), showing that

exogenous cash shocks should have a larger effect on capital accumulation when the tangibility of

capital is high. This is because a dollar windfall buys a unit of capital, which serves as collateral

for another loan. When asset tangibility is high, the chain of collateralized investments ultimately
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results in a large multiplier effect. Almeida and Campello find that their prediction holds across a

broad range of specifications. Our model and the Almeida and Campello model rely upon similar

arguments. In both models, the firm and lender rationally account for the spillover effect provided

by capital in terms of loosening the collateral constraint. However, the two papers rely upon

different methods for empirical identification.

Myers (1977) shows that preexisting defaultable debt creates an overhang problem, with the

problem being most severe for long-lived debt. In particular, an equity-maximizing manager

underinvests relative to first-best whenever capital accumulation provides a positive spillover to

existing lenders. Lang, Ofek, and Stulz (1996) present empirical evidence supportive of the Myers

theory and consistent with our results. When book leverage is included as a regressor, along with

average Q, leverage only enters significantly negative for low Q firms. This is precisely the set of

firms for which the overhang correction is likely to be large.

Fazzari, Hubbard, and Petersen (1988) try to infer the magnitude of financing frictions based

upon the sensitivity of investment to cash flow. Kaplan and Zingales (1997) question the formal

justification for this traditional methodology. For example, in simulations of a dynamic model,

Gomes (2001) shows that financial frictions are neither necessary nor sufficient for significant cash

flow effects. In contrast to the traditional approach, the empirical tests in our paper do not rely

upon cash flow coefficients and are derived explicitly from a dynamic structural model.

The Stein (2003) recent survey provides a convenient taxonomy. The model presented in this

paper includes the main frictions discussed in his models of costly external finance: convex costs

of external equity, credit rationing, and debt overhang. Excluded from our analysis are theories

based upon agency conflicts between managers and shareholders. The omission reflects

tractability concerns, not perceptions of relative importance.

Section 2 presents the model; Section 3, the data; and Section 4, the empirical estimation.

Section 5 concludes. Proofs of all propositions are in Appendix A, a description of the data is in

Appendix B, and the derivation of the generalized method of moments (GMM) estimators used in

Section 4 in in Appendix C.
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2. The model

The manager works in the interest of current shareholders. Investors are risk neutral and discount

cash flows at the risk-free rate r > 0. The endogenous state variable K denotes the capital stock

and I denotes investment. An exogenous state variable ε captures innovations in output prices,

variable input costs, and productivity. Operating profits are

F (K, ε)−G(I,K). (1)

The function F represents gross profits, excluding costs of installing new machinery or removing

old machinery. The function G represents capital adjustment costs other than the direct price of

capital. For example, a major investment program disrupts current business operations. The

function G captures such effects. For simplicity, the price of capital is normalized to one.

Assumption 1 imposes standard restrictions on real technologies.

Assumption 1 The gross profit function F is twice continuously differentiable, strictly

increasing in both arguments, and homogeneous degree one in K. The adjustment cost function G

is twice continuously differentiable, strictly convex, and homogeneous degree one in (I,K).

The gross profit function (F ) is linear in capital. For example, F is linear when the firm is a

price-taker and the production function exhibits constant returns-to-scale. The implications of

nonlinearity resulting from market power or decreasing returns or both are examined in the

empirical tests. The costs of capital adjustment (G) are convex. Lucas (1967) argues that such

adjustment costs are necessary to explain investment dynamics. Since then, convex adjustment

costs have been standard in dynamic investment models.

There exists a complete probability space (Ω,F ,P) supporting a Wiener process Wt. For each

time t ∈ [0,∞), information revelation is described by the filtration Ft ⊂ F , where each Ft is the

augmented σ-algebra generated by the Wiener process. The evolution of (K, ε) is described by

dKt = (It − δKt)dt and (2)

dεt = µ(εt)dt+ σ(εt)dWt. (3)
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The parameter δ represents the depreciation rate. The drift and volatility for ε satisfy the

necessary conditions for the existence of a unique solution to the stochastic differential equation

as specified in Oksendal (2000). The diffusion process for the state variable ε is general enough to

capture competitive dynamics affecting capital accumulation. For instance ε can be specified as

an Ornstein-Uhlenbeck process to proxy for the effects of entry and exit.

Consistent with the theoretical literature on adverse selection in equity markets, we assume

that the costs of external equity are convex. Anticipating, these costs cause the firm to retain

funds to reduce reliance on external equity. If the firm lacks internal funds and debt capacity,

convexity creates an incentive to spread equity flotations over time. In addition, we assume that

smaller firms face higher marginal costs of external equity. This modeling approach is consistent

with the findings of Altinkilic and Hansen (2000), who show that underwriting fees are increasing

in the size of the issuance and decreasing in the size of the firm. In reality, numerous factors

determine the cost of external equity for a particular firm. Our objective is to capture the key

factors in a tractable manner. To this end, let X denote the dollar value of external equity

finance. If X < 0, the firm is paying a dividend, not issuing new shares. The function H(X,K)

represents the cost of equity. Assumption 2 summarizes conditions imposed on H.

Assumption 2 The cost of equity function H is twice continuously differentiable, strictly

increasing and weakly convex in X, decreasing and convex in K, homogeneous degree one in

(X,K), and satisfies H(X,K) = X for all X ≤ 0.

In the model, dividends and equity flotations are both captured by the variable X. Negative

values of X are equivalent to shareholders incurring a negative cost. That is, when X < 0, the

firm is paying a dividend and shareholders receive X. When X > 0, the firm is raising external

equity. The cost of external equity to current shareholders increases as the firm works its way up

a convex cost schedule.

To capture the intermediated loan process, we assume the firm has access to a bank credit

line. To account for this credit line, we add a second endogenous state variable B denoting the
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credit line balance. This credit line plays an important role, allowing the firm to avoid costly

spikes in equity issuance when the investment opportunity set (ε) increases.

Following Hart and Moore (1994), it is assumed that the firm holds all bargaining power in

the event of renegotiation with the bank. We then impose a renegotiation-proofness constraint on

the bank credit line. The liquidation value of each unit of capital is L(ε) ∈ (0, 1). We let L depend

on the state of the industry (ε), motivated by Shleifer and Vishny (1992). Consistent with the

empirical evidence presented by Carey (1995), the bank is assumed to be senior in the event of

default. The bank imposes a collateral constraint ensuring Bt ≤ L(εt)Kt. If Bt > L(εt)Kt, the

credit line is not renegotiation proof, because the firm would make a take-it-or-leave-it offer

pushing the bank down to its reservation value, which is L(εt)Kt. This particular functional form

for the collateral constraint is also employed by Kiyotaki and Moore (1997) and Almeida and

Campello (2004). In the event of default, absolute priority is obeyed. Assuming perfect

competition in the intermediated loan market, the interest rate on the bank credit line must be r,

because the collateral constraint ensures that the bank loan is risk-free.

In the presence of financing frictions, firms with free cash flow retain some portion of the

funds to build up a cash buffer-stock. To accommodate such policies, the state variable B is

allowed to go negative. There must be some cost to holding cash, otherwise no firm would ever

distribute funds to shareholders. For example, Graham (2000) finds that cash retentions are

tax-disadvantaged, because corporate tax rates generally exceed tax rates on interest income for

the marginal bondholder. To account for such considerations, the firm earns an interest rate

rs < r when it saves. For the sake of brevity, define er as
B ≥ 0⇒ er = r and (4)

B < 0⇒ er = rs < r. (5)

The variable g denotes the financial control policy, regulating the growth of the bank credit

line. The evolution of the credit line is determined by

dBt = gtdt. (6)
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The collateral constraint is enforced by restricting the instantaneous control g as

g ≤ g(K,B, ε) ≡ γ ∗ [L(ε)K −B]. (7)

The control constraint in Eq. (7) allows the firm to close a portion of the gap between the current

credit line balance (B) and its upper bound (LK). The free parameter γ > 0 specifies the rate at

which the firm is permitted to close the gap. This parameter can be set arbitrarily high, so that

the firm can close the gap quickly. The chosen value of γ has no effect on our empirical investment

equation.

The intuition for the credit line balance is as follows. When gt and Bt are both positive, the

firm is drawing on its credit line. When gt is positive and Bt is negative, the firm is running down

its buffer-stock of cash. When gt is negative and Bt is positive, the firm is paying down bank

debt. Finally, when gt and Bt are both negative, the firm is increasing its cash buffer-stock.

To capture the debt-overhang effect, in the model there is a preexisting public debt obligation

with a perpetual coupon b > 0.3 The value of the public debt is denoted D. The public debt

cannot be renegotiated. This assumption is made for two reasons. First, we want the model to

capture the distortion posited by Myers (1977). Renegotiation would eliminate the distortion.

Second, the assumption is adopted in the interest of realism. In the real world, the difficulty of

renegotiating public debt stems from coordination costs, free-rider problems, and the unanimity

requirement imposed by the Trust Indenture Act of 1939. Our model of public debt is also

consistent with the empirical observation that private workouts are far less likely to succeed when

the firm has public debt.

The second assumption imposed on the public debt is that it contains a covenant prohibiting

the issuance of additional perpetual debt. Without such a prohibition, existing shareholders could

make profits ex post by issuing additional perpetual debt that reduced the value of the claim held

by current bondholders. Consistent with this assumption, Smith and Warner (1979) find that

90.8% of covenants in their sample contain some restriction on future debt issuance. However, the

3The investment optimality condition serving as the basis for our regression equation holds for arbitrary b. Moyen
(2004) uses numerical optimization to choose the perpetual coupon. She obtains an analogous investment optimality
condition.
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stringency of covenants does vary. Covenants often limit asset sales as well. The model can be

extended with another covenant mandating I ≥ 0. Proposition 1 still holds if one imposes a

non-negativity constraint on investment.

Assumption 3 summarizes the debt market.

Assumption 3 In the event of default, absolute priority is obeyed and the firm is liquidated for

L(εT )KT . The bank is senior in priority. The interest rate on the bank credit line is r, with a

collateral constraint ensuring the bank loan is risk-free. The firm earns rate rs < r on cash

savings. The firm has a public debt obligation with perpetual coupon b > 0.

2.1. Optimal financial and investment policies

The following budget constraint must be satisfied at each instant:

Xt = It +G(It,Kt) + b+ erBt − gt − F (Kt, εt). (8)

The first four terms on the right side of the budget constraint Eq. (8) represent uses of funds:

direct investment costs, indirect capital adjustment costs, coupon payments on public debt, and

interest expense on the bank credit line. The last two terms in the budget constraint represent

sources of funds other than external equity. The variable g measures new bank borrowing or

reductions in the cash buffer stock, whereas F measures the cash inflow from current operations.

The vector (Kt, Bt, εt) captures all relevant information at each point in time. At each instant,

the manager chooses an optimal financial policy gt and investment policy It. The manager must

also choose an optimal time to default, denoted by the stopping time T ∈ T, where T is the set of

all stopping times defined with respect to the natural filtration. In choosing the stopping rule T ,

the manager recognizes that the equity value function S is set equal to zero in the event of

default. This is consistent with absolute priority being obeyed in bankruptcy. As is standard, the

value function S pastes smoothly to zero along the optimal default region.
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The manager solves

S(Kt, Bt, εt) = max
gt+τ ,It+τ ,T

Et

·
−
Z T−t

0
e−rτH(Xt+τ ,Kt+τ )dτ

¸
(9)

subject to : Eqs. (2) , (6) , (7) , and (8) .

The solution to Eq. (9) is characterized using the Bellman equation,

rS = max
g,I

−H[I +G(I,K) + b+ erB − g − F (K, ε),K] (10)

+(I − δK)SK + gSB + µ(ε)Sε +
1

2
σ2(ε)Sεε + λ[γ(L(ε)K −B)− g],

in which the relevant constraints are substituted directly into the objective function, with λ

denoting the multiplier on the collateral constraint Eq. (7).

The first-order condition for the optimal financing policy is

−SB = HX − λ. (11)

The complementary slackness condition yields a simple decision rule for optimal financing

λ = 0 =⇒ −SB = HX and (12)

λ > 0 =⇒ −SB < HX and g∗ = g. (13)

The term −SB represents the shadow cost of bank debt, and the term HX represents the

marginal cost of equity finance. When the collateral constraint is slack, the optimal policy

equates the two. When the collateral constraint is binding, the marginal cost of equity exceeds

that on bank debt, because of rationing of credit.

The optimality condition determining investment is

SK ≡ q = HX ∗ [1 +GI(I∗,K)] = (−SB + λ) ∗ [1 +GI(I∗,K)]. (14)

The optimality condition Eq. (11) states that the firm invests up to the point that the shadow

value of a unit of installed capital is just equal to the marginal cost of investment, taking into

account the cost of funds. Rearranging terms, it is apparent that, conditional upon q, equity

dependent firms invest less, with

GI(I
∗,K) =

q

HX
− 1. (15)
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2.2. Implications for empirical testing

For the purpose of empirical testing, we assume the adjustment cost function G has the following

functional form, consistent with Assumption 1:

G(I,K) =
1

2
αK

·
I

K
− δ

¸2
, (16)

in which α > 0 is a parameter determining curvature. The functional form for G is common in

the literature. For examples, see Summers (1981), Chirinko (1987), and Hennessy (2004).

Letting Φ be an indicator function for X > 0, we assume the external equity cost function has

the following function form, consistent with Assumption 2:

H(X,K) = X +Φ ∗
"
1

2
φK

µ
X

K

¶2#
, (17)

in which φ > 0 is a parameter determining curvature.

Under the stated assumptions, the optimality condition for investment is

i∗ =

µ
δ − 1

α

¶
+

µ
1

α

¶
[1 +Φφx]−1 ∗ q, (18)

i ≡ I

K
, and (19)

x ≡ X

K
. (20)

Now define the function f(·) as

f(x) ≡ [1 + φΦx]−1 . (21)

Conditional upon issuing equity, the median value of x (capital-normalized equity issuance) is

0.076 in our sample. A fair approximation of f(x) can be obtained using a first-order Taylor

expansion

f(x) ≈ 1− φΦx. (22)

12



In the investment equations that follow, the ≈ sign stems from this linearization. Substituting

this approximation into the optimality condition yields

i∗ ≈
µ
δ − 1

α

¶
+

µ
1

α

¶
q −

µ
φ

α

¶
(q ∗Φx). (23)

Eq. (23) states that, ceteris paribus, the rate of investment is higher for firms with high marginal

q values. This is a standard feature of neoclassical models of investment under convex costs of

adjusting the capital stock, e.g., Hayashi (1982). However, our model differs from the neoclassical

model in that financing matters. In particular, the interaction term in Eq. (23) indicates that,

conditional upon marginal q, an equity issuer invests less. Intuitively, costs of external equity

discourage capital formation by raising the shadow cost of funds. Also, if marginal q were

observable to the econometrician, the model would yield a simple prescription in terms of

econometric testing. An interaction term between marginal q and normalized equity issuance

should be included along with q as a regressor in the empirical investment equation.

Complicating the task of econometric estimation is the fact that marginal q is not directly

observable. This is the subject of Proposition 1.

Proposition 1. Under Assumptions 1-3, the shadow value of capital is

qt = Qt − Rt
Kt
+
Ct
Kt
, (24)

Qt ≡ St +Bt +Dt
Kt

, (25)

Rt ≡ Et

h
e−r(T−t)L(εT )KT

i
, and (26)

Ct ≡ Et

·Z T−t

0
e−rτ [λgKK + (HX − 1) (b+ erB − g)] dτ¸ . (27)

Proof. See Appendix A.

Under the perfect markets assumptions adopted by Hayashi (1982), there are no binding

collateral constraints and the cost of a dollar of external equity is unity. In this case, λ = 0 and

HX = 1, implying that Ct = 0 in perfect markets. In Hayashi’s model, the possibility of default

never enters into the investment decision. In the notation of our model, a firm that never defaults

13



treats T as infinite. For such a firm, the variable Rt = 0. Therefore, Proposition 1 is consistent

with Hayashi’s (1982) result that marginal q is equal to average Q in perfect financial markets.

Otherwise, financial frictions drive a wedge between marginal and average Q.

The variable R is the correct empirical proxy for the Myers (1977) overhang effect. It

measures the spillover benefit from capital accumulation accruing to lenders. R is large when T is

low. Intuitively, for distressed firms with a small expected passage time to default, investment

generates a large positive externality to lenders who recover the assets of the firm in bankruptcy.

Also, holding T fixed, the variable R is large when the liquidation value of assets (L) is high.

Intuitively, the discounted value of lender recoveries in default is capitalized into the market value

of debt. However, lender recoveries in default have no effect on marginal q for shareholders. To

determine true marginal q, these recovery values must be subtracted from average Q. Therefore,

when L is high, a larger overhang adjustment is necessary.

Complicating econometric testing of the theory is the fact that the variable C cannot be

observed directly. However, inspection of each of the terms suggests firm characteristics that are

indicative of high values of C. The term λgK captures the benefit of installed capital in terms of

relaxing collateral constraints in future periods. Therefore, all else equal, C is high for firms

facing binding collateral constraints in the future. Now consider the term

(HX − 1)(b+ erB − g). (28)

HX ≥ 1, with strict inequality when the firm issues equity. The term above is zero for healthy

dividend-paying firms with HX = 1. The term in Eq. (28) is highest for firms with high debt

service obligations and equity dependent firms. Equity dependent firms are those relying heavily

upon external equity for financing. To see this, note that an equity dependent firm has HX > 1

and limited access to new debt (low g). The KZ and WW indices are reasonable proxies for firms

with high C/K values.

Substituting the expression for q derived in Proposition 1 into the empirical investment Eq.
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(23) yields

i∗ ≈
µ
δ − 1

α

¶
+

µ
1

α

¶
Q−

µ
φ

α

¶
(Q ∗Φx)

InteractionTerm
−
µ
1

α

¶ µ
R

K

¶
Overhang

(29)

+

µ
1

α

¶µ
C

K

¶
Index

+

µ
φ

α

¶µ
R− C
K

∗ Φx
¶
.

Thus the theory predicts that average Q and indices proxying for C/K have positive coefficients.

The overhang correction (R/K) and the interaction term (Q ∗ Φx) are predicted to have negative

coefficients.

These results are of particular interest because two of them are counterintuitive. First, casual

intuition suggests that equity issuers invest more. However, the model predicts that conditionally

an equity issuer invests less, because of costs of external equity. Fig. 1 provides some intuition to

complement the formal proof provided above. Consider two firms, with the same value of q > 1,

but assume that one of the firms has ample cash and that the second must fund all investment by

floating new equity. For simplicity, we treat the depreciation rate (δ) as zero. Under the stated

assumptions, the marginal cost investment for the unconstrained firm is

1 +GI = 1 + αi. (30)

The unconstrained firm invests up to i∗u, which is the point where the marginal benefit of

investment (q) is just equal to the marginal cost. Under the stated assumptions, the constrained

firm must finance with external equity with i = x. The marginal cost of investment for the

constrained firm is

HX(1 +GI) = (1 + φi)(1 + αi) = 1 + (α+ φ)i+ αφi2. (31)

The constrained firm invests up to i∗c < i∗u. The difference in investment between the firms is the

result of differing marginal costs of investment. In fact, both firms face convexity in the level of

investment costs. However, the constrained firm also faces convexity in the marginal cost

schedule. In contrast, the unconstrained firm faces a linear marginal cost schedule.
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[Insert Fig.1 near here.]

The second prediction that is potentially counterintuitive is that a proxy for constrained

status is predicted to have a positive coefficient. It is worth stressing that the model does not

predict that constrained (equity dependent) firms invest more. Eq. (15) clearly shows that,

conditional on q, a constrained firm is predicted to invest less. However, the model does predict

that proxies for (C/K) have a positive coefficient when Eq. (29) is estimated. To complement the

formal proof, we turn to Fig. 2 to provide the intuition. Let qnaivec denote a naive estimate of

marginal q for the constrained firm, ignoring the collateral effect (λgK). The true marginal

qc > q
naive
c . We can view the manager as using a two-step procedure in deciding how much to

invest. In step one, he ignores the collateral value of investment and chooses inaivec . In step two,

he increases his investment to i∗c taking into account the collateral effect. The variable C/K is

effectively capturing this second subtle effect.

[Insert Fig.2 near here.]

Although the focus of the paper is investment, it is assuring to note that the model generates

reasonable predictions regarding the financial behavior of the firm. The optimal financial policy

hinges upon SB, which is the shadow cost of increasing the bank credit line or reducing the cash

buffer-stock. Proposition 2 is informative about the factors determining the magnitude of this key

variable.

Proposition 2. The shadow cost of debt is

SB = E

·Z T

0
e−rτ [λgB − erHX ]dτ¸ < 0. (32)

Proof. See Appendix A.

In this model two types of firms are predicted to pay dividends. First, consider a firm that is

likely to default in the near future. As T approaches zero, so too does |SB| . From the optimality
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condition Eq. (11) it follows that the firm faces a binding collateral constraint. Intuitively, a firm

nearing default pays out any cash from its buffer-stock and then exhausts its credit line. This sort

of behavior is the financial analog of the Myers overhang effect for real investments. Real-world

contract provisions can be viewed as placing other direct constraints on the firm in light of such

incentives. For example, bank credit lines often contain clauses making it difficult or impossible

for a firm to draw on its credit line if it has suffered a material adverse change.4

The second type of firm predicted to pay dividends is a corporation such as Microsoft, with an

ample cash buffer-stock. Such a firm pays out just enough cash to ensure that the shadow value

of a unit of cash on hand, as measured by |SB| , is just equal to unity. The precautionary motive

for cash retentions, as captured by the term λgB, is balanced against low rate of return earned on

retained cash er = rs < r.
When |SB| > 1, the optimality condition in Eq. (11) implies that the firm floats some amount

of new equity. Inspecting Proposition 2, such a firm must have a fairly long horizon (T ), must

anticipate being a borrower the majority of the time (er = r), and must anticipate binding
collateral constraints in the future. Effectively, the firm is smoothing the costs of external equity.

3. Data and summary statistics

The data come from two sources. The first is the combined annual, research, and full coverage

2005 Standard and Poor’s Compustat industrial files. The sample is selected by first deleting any

firm-year observations with missing data or for which total assets, the gross capital stock, or sales

are either zero or negative. All observations that fail to obey standard accounting identities are

deleted. A firm is included in the sample only if it has at least three consecutive years of complete

Compustat data. Finally, a firm is omitted if its primary standard industrial classification (SIC)

is between 4900 and 4999, between 6000 and 6999, or greater than 9000, because the model is

inappropriate for regulated, financial, and public service firms.

Some of the data variables require calculation of market betas and the standard deviation of

4Such a constraint would not affect the investment optimality condition that we estimate.
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the residual from the market model. To do so we use monthly stock returns from the 2005 Center

for Research in Security Prices (CRSP) tapes. For a firm-year observation to be included in the

sample, the firm must have at least three years of complete return data preceding the year that

the firm is in the Compustat sample. Our market betas and residual standard deviations are

calculated using from three to five years of data, depending on availability. After merging the

CRSP and Compustat data, we end up with a total of 46,118 firm-year observations from 1968 to

2003, with a minimum of 657 observations per year and a maximum of 1723 observations per

year. A detailed description of the variables is in Appendix B.

The debt-overhang correction represents the current value of lenders’ rights to recoveries in

default. Recovery ratios by SIC are based on Altman and Kishore (1996). We ignore short-term

debt and assume that long-term debt matures in a straight-line fashion, with 5% of the original

debt maturing each year.5 This allows us to estimate Rt/Kt as

Rt/Kt = Leveraget ∗ Recovery Ratio ∗ [
20X
s=1

ρt+s[1− .05(s− 1)](1 + r)−s], (33)

in which ρt+s denotes the probability of default in period t+s based on the date t debt rating.

Moody’s reports of hazard rates by bond rating are used as the basis for default probabilities.

When bond ratings were not available in Compustat, they were imputed based on the estimates

from Blume, Lim, and MacKinlay (hereafter, BLM, 1998).

Because the variable C/K includes the benefit of installed capital in terms of relaxing

collateral constraints in future periods, a good proxy identifies firms that are likely to face a

binding constraint. The first proxy we employ is the widely used KZ index. This index comes

from Kaplan and Zingales (1997), who examine the annual reports of the 49 firms in the Fazzari,

Hubbard, and Petersen (1988) constrained sample, using this information to rate the firms on a

financial constraints scale from one to four. They then run an ordered logit of this scale on

observable firm characteristics. Several authors use these logit coefficients on data from a broad

sample of firms to construct a synthetic KZ index to measure finance constraints. Specifically, the

5This approximation implies a weighted-average maturity of 10.5 years and is close to that found in Klock, Thies,
and Baum (1991), who estimate the average term to maturity was 15.3 years in 1977 and 12.7 years in 1983 for a
sample of one hundred manufacturing firms.
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KZ index is constructed as

−1.001909CF + 3.139193TLTD − 39.36780TDIV − 1.314759CASH + 0.2826389Q, (34)

in which CF is the ratio of cash flow to book assets, TLTD is the ratio of total long-term debt to

book assets, TDIV is the ratio of total dividends to book assets, CASH is the ratio of the stock

of cash to book assets, and Q is the market-to-book ratio. Examination of the index reveals that

it is likely to isolate firms with a high C/K ratio, those with low cash, low cash flow, and high

debt burdens.

Following Baker, Stein, and Wurgler (2003), we exclude the Q term when computing the

pseudo-KZ index for each firm. There are two reasons for doing so. First, Q enters the empirical

regression equation separately, and we want to isolate its effect from the effect of collateral

constraints. Second, Whited (2001) has demonstrated that, in its role as a proxy for marginal q,

the market-to-book ratio contains a great deal of measurement error.

The second measure of a binding collateral constraint is from Whited and Wu (2006). Their

index is constructed from the Euler equation from a standard intertemporal investment model

with convex adjustment costs. In this model, and in the absence of constraints, the marginal cost

of investing today equals the opportunity cost of postponing investment until tomorrow. In the

presence of constraints, a wedge appears between these two costs. The WW index is an estimated

parameterization of this wedge. Specifically, the WW index is

−0.091CF − 0.062DIV POS + 0.021TLTD − 0.044LNTA+ 0.102ISG− 0.035SG. (35)

Here, DIV POS is an indicator that is one if the firm pays dividends, and zero otherwise; SG is

own-firm real sales growth; ISG is three-digit industry sales growth; and LNTA is the natural log

of book assets. Examination of this index indicates it is likely to identify firms with a high C/K

ratio. Firms with a high WW index are small, have high debt burdens, and low cash flow. Also,

they are the slow-growing firms in fast-growing industries.

Table 1 presents summary statistics from the sample. The first two rows describe the full

sample. Of interest here are the figures for equity issuance, which occurs in 17.9% of the
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firm-years. The next two lines describe separately the firms that issue equity and those that do

not. Not surprisingly, the equity issuers are small, invest at a high rate, and have high Q values.

They also have low cash flow relative to investment, high total debt, but low debt net of cash.

The rest of the table examines the characteristics of firms categorized as constrained and

unconstrained according to the KZ and WW indices. In reading the table, recall that our

empirical testing is predicated upon the assumption that a high value for either index is indicative

of the firm having a high C/K ratio.

[Insert Table 1 near here.]

The firms categorized as constrained according to the KZ index do not appear to be more

equity dependent than average, and they do not appear to be much smaller than average. They

also seem to be investing at an average rate, despite a lower than average Tobin’s q. Although

these characteristics do not point to the types of firms that face collateral constraints, other

characteristics do. The high KZ firms do not have enough cash flow to cover investment and they

are highly indebted. These last two characteristics are consistent with a binding collateral

constraint. As expected, the firms classified as unconstrained have far more cash flow than

investment, as well as low leverage.

The firms categorized as constrained according to the WW index are clearly equity dependent:

They issue equity more often than average and, when they issue, the size of the issue (relative to

the size of the firm) is larger than average. They also have somewhat higher leverage than

average. This dependence on outside finance makes sense because these firms have low cash flow

relative to investment. In contrast, firms with a low WW index have much higher cash flow than

investment and depend on outside finance less than average. In sum, these two indices do appear

to identify firms that could benefit from a relaxation of a collateral constraint. The main

difference between the two types of constrained firms is that the KZ-constrained firms rely more

on debt and the WW-constrained firms rely more on equity. This result primarily stems from the
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heavy loading on industry sales growth in the WW index, which is not present in the KZ index.

Firms in fast-growing industries are much more likely to finance with equity.

4. Empirical tests

Table 2 presents results from estimating the investment regression in Eq. (29) via ordinary least

squares (OLS).6 As is standard in the literature, the model is estimated using firm and

year-specific intercepts. A number of factors can generate fixed effects. For example, in Eq. (29),

depreciation rates (δ) differs across firms and over time, affecting the optimal rate of investment.

Consistent with this view, a standard Hausman test rejects a specification without firm- and

year-specific intercepts.

[Insert Table 2 near here.]

The first two lines contain estimated coefficients from baseline specifications in which the KZ

and WW indices are used as proxies for (C /K ). All coefficients are consistent with the model’s

predictions, and all coefficients are significant at the 5% level. First, we note that the simple Q

theory is easily rejected, because regressors other than Q enter significantly.

The coefficient on the interaction term is negative, indicating that, conditional on average Q,

equity issuers invest less. This is consistent with corporations perceiving convex costs of external

equity. The theoretical models of Myers and Majluf (1984) and Krasker (1986) demonstrate that

such costs can be traced to asymmetric information problems in the equities market.

The coefficient on the overhang correction, (R /K ), is negative, indicating that heavily levered

firms with high probabilities of default invest less. This lends support to the Myers (1977)

contention that firms tend to underinvest because of the failure of managers to account for

investment returns accruing to lenders. Also on average estimates of the magnitude of the

coefficients on the overhang corrections imply that the elasticity of investment with respect to

leverage for the median firm is approximately -1. This substantial effect suggests that the Myers

6The final term interacting (R−C)/K and Φx is omitted. It is never significant and has no material effect.
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underinvestment problem is more than a theoretical curiosity. Instead, debt overhang creates a

large drag on the investment of distressed firms.

Finally, the coefficient on either proxy for (C /K ) is positive and significant. This indicates

that a collateral channel is operative. In particular, firms that are more likely to face binding

collateral constraints and firms that are more equity dependent appear to account for the positive

spillover that investing today provides in terms of facilitating access to collateralized loans. This

effect is consistent with the models of Hart and Moore (1994) and Kiyotaki and Moore (1997),

which stress that loans could be rationed based on collateral value. As discussed in Section 1,

these findings complement those in Almeida and Campello (2004), who present evidence favoring

the existence of a collateral effect.

4.1. Robustness

In the remainder of the analysis, we address the three sources of concern that have been most

commonly cited in the investment literature. The first concern is the possibility of endogeneity

bias in the estimates in Table 2. However, this concern is likely to be of little importance for two

reasons. First, Q and the overhang correction are measured at the beginning of the year, whereas

investment is measured during the course of the year. Therefore, although not strictly exogenous,

these two right-hand-side variables can be considered predetermined. A similar argument applies

to several of the components of the KZ and WW indices; and one of the components of the WW

index, industry sales growth, is easily argued to be an exogenous variable. The predetermined or

exogenous components of the KZ and WW indices account for 61% and 70% of their total

variation, respectively. Second, any endogeneity bias in the coefficients on the interaction term or

the overhang correction is likely to work against finding a negative coefficient. To see this, note

that the regression disturbance can be interpreted as an unobservable shock to investment that is

orthogonal to Q. A positive realization of such a shock increases both investment and either debt

or equity issuance, thus resulting in a positive correlation between the regression disturbance and

either the interaction term or the debt-overhang term. These positive correlations result in

coefficients that are biased upward. Therefore, if endogeneity bias is important, the true

22



coefficients on the interaction term and on the overhang correction are even more negative than

the coefficients estimated via OLS.

The second concern commonly cited in the literature is bias resulting from curvature of the

profit function. Hayashi (1982) notes that, even in perfect financial markets, average Q is not a

sufficient statistic for investment when linear homogeneity (Assumption 1) is violated. For

example, the profit function (F ) is not linear homogeneous when the firm has market power or

decreasing returns. Cooper and Ejarque (2003) and Abel and Eberly (2004) show that cash flow

proxies for the wedge between marginal q and average Q when the firm has market power. Thus

market power provides a plausible explanation for the significance of cash flow documented in

numerous papers.

To address concern over market power or decreasing returns, the third and fourth regressions

in Table 2 add cash flow to the regression. The addition of cash flow has a small effect. All

coefficients have the predicted signs. The coefficient on the overhang correction increases in

absolute value and remains significant at the 5% level. The coefficient on the KZ index increases

and remains significant at the 5% level. The coefficient on the WW index falls but remains

significant at the 5% level. The interaction term continues to have the predicted negative sign,

but is only significant at the 10% level. Summing up, it appears that market power and

decreasing returns are not driving the results.

Cash flow enters significantly, which is inconsistent with the model as stated. There are three

plausible explanations for the significance of cash flow. First, cash flow could be picking up

curvature in the profit function resulting from market power or decreasing returns. Second, the

significance of cash flow could be the result of measurement error in Q. Finally, cash flow effects

could be the result of managerial empire building à la Jensen (1986).

The third commonly cited source of concern in the investment literature is measurement error

in average Q. Poterba (1988) argues that the inevitable measurement errors in average Q biases

coefficients, and Erickson and Whited (2000) delineate possible sources of measurement error.

Consistent with this view Erickson and Whited (2000) use measurement-error consistent GMM in
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a regression of investment on Q and cash flow, finding that only 40% of the variation in

observable values of Q stems from variation in true Q. They also find that Q increases in

importance and cash flow decreases in importance after controlling for measurement error.7

Based on this evidence, it is reasonable to question whether measurement error in Q is driving

the reported results. To address this concern, we derive a GMM estimator that is consistent even

when the first regressor, average Q, is measured with noise. (See Appendix B.) Essentially, we

tailor the estimators for the linear model in Erickson and Whited (2000, 2002) to accommodate

the particular nonlinear specification in Eq. (29). There exists no off-the-shelf remedy for

measurement error in nonlinear models, because the appropriate correction is always model

specific. For example, the remedy in Hausman, Ichimura, Newey, and Powell (1991) assumes a

specific polynomial functional form, and the method in Schennach (2004) requires extra

information not available in Compustat. Further, as discussed in Erickson and Whited (2000),

measurement error in Q is likely to be serially correlated. Therefore, lagged instrumental

variables are inappropriate.8

Table 3 reports coefficients using measurement-error consistent GMM to estimate the model.

The coefficients on average Q remain significant and are over twice as large as their OLS

counterparts. For the median firm in our sample, the implied elasticities of investment with

respect to Q rise from approximately 0.13 to 0.42. Similarly, all but one of the coefficients on the

interaction term and all of the coefficients on the overhang correction remain significantly

negative. The correction for measurement error produces a rise in the absolute magnitudes of

these coefficients. For example, whereas the OLS estimates on the interaction term are small in

magnitude, according to the estimates in Table 3 the median equity-issuing firm in our sample

would increase investment by approximately 5% if it were to finance instead with internal funds.

7The Erickson and Whited (2000, 2002) estimators are also used in Hennessy (2004) and Almeida and Campello
(2004).

8Measurement error clearly exists in the two proxies for (C /K ) as well, because this term is inherently unob-
servable. Dealing with two mismeasured variables in a nonlinear model is an intractable problem. Therefore, it is
important to interpret the estimated coefficients on the proxies for (C /K ) literally, as if taking the KZ and WW
indices at face value. On the one hand, this strategy alleviates the measurement error problem, because variables
that are taken at face value cannot, by definition, contain measurement error. On the other hand, the estimated
coefficients cannot be given a strict structural interpretation.
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Also, the elasticity of investment with respect to the overhang correction more than doubles in

comparison with the OLS estimates. The coefficients on the two indices remain positive and

significant, with those on the WW index decreasing and those on the KZ index increasing.

Although the coefficients on cash flow remain significantly greater than zero, they are smaller

than the OLS estimates and much smaller than figures reported in most of the literature. For

example, the cash-flow coefficient for the unconstrained group of firms in the original Fazzari,

Hubbard, and Petersen study is 0.254, and the coefficient for the most constrained group is 0.670.

Finally, the measurement-error consistent estimates of the regression R2s are substantially higher

than in the OLS case.9

Table 4 contains a final robustness check. Because both the WW and KZ indices contain cash

flow as a component, while cash flow enters the regression separately, the cash flow coefficients

reported in Tables 2 and 3 could be biased. Further, the presence of measurement error in Q can

cause this bias to spill over to other regressors, because Q is correlated with all of the variables in

the regression. To examine this issue, we strip cash flow out of both indices and re-estimate the

models using both OLS and GMM. The results are similar, suggesting that this concern does not

drive the findings.

In summary, the evidence is consistent with the predictions of the model. That is, corporate

investment is affected by convex costs of external equity (negatively), debt overhang (negatively),

and collateral effects (positively). The statistical significance of the latter two channels is highest.

5. Conclusion

This paper provides an internally consistent framework for empirically examining the effects of

financial frictions on investment. This endeavor is a contribution to a literature that has based

most of its tests on embedding predictions from a static investment model into a regression of

investment on Q, which is itself based on a dynamic model. For example, the most commonly

used test consists of inserting cash flow into such a regression and examining whether a priori

9Although not reported, the overidentifying restrictions of the model are rejected at the 10% level in only two
out of the 36 cross sections. This evidence bolsters the hypothesis that endogeneity is not important, because the
moment equations would be violated in the presence of a correlated error and regressor.
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constrained firms have large significant coefficients on cash flow. This strategy follows from static

models in which financially constrained firms invest more after experiencing cash windfalls.

However, these sorts of tests can be misleading, because, as in Gomes (2001), features that

generate a certain prediction in a static model can generate a different prediction when

completely integrated into a dynamic optimizing framework.

In contrast, the model developed here is one in which a firm optimizes over time and under

uncertainty, while facing three important frictions: convex costs of external equity, collateral

constraints, and debt overhang. The model produces several interesting predictions, two of which

are counterintuitive. First, although one would expect firms issuing equity to have high

investment, firms issuing equity invest less, conditional on Q, because of the extra costs associated

with floating equity. Second, conditional on Q, firms that expect to face collateral constraints in

the future invest more today, not less. This sort of preemptive investment occurs because

installed capital relaxes collateral constraints. The final prediction of the model, which is

intuitive, is that firms experiencing overhang invest less. The model shows that all of these

predictions can be nested into a single regression of investment on Q and three extra terms

representing each of the above frictions. Evidence from data on US firms supports the model, and

this evidence appears to be robust to measurement error in Q.

Although the model and empirical tests embody a rich menu of financing frictions, in the

interest of tractability our analysis abstracts from agency conflicts between managers and

shareholders. A challenge for future research is using dynamic models to understand the effects

on investment of agency conflicts between managers and shareholders.
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Appendix A

Proof of roposition 1.

The Bellman equation holds point-wise, implying that partial derivatives of both sides of Eq.

(10) must match. Differentiating with respect to K yields

rSK = −HXXK −HK + (I − δK)SKK + SK(IK − δ) + gSKB + SBgK + (36)

µ(ε)SKε +
1

2
σ2(ε)SKεε + λ(γL− gK) + [γ(LK −B)− g]λK .

In the interest of brevity, define the Dynkin’s operator on a twice differentiable function, say f , as

A(f) ≡ (I − δK)fK + gfB + µ(ε)fε +
1

2
σ2(ε)fεε. (37)

Using the operator A and the definition of q, Eq. (36) can be simplified as

rq = −HXXK −HK +A(q)− δq + qIK + SBgK + λ(γL− gK) + [γ(LK −B)− g]λK . (38)

Substituting XK and the optimality conditions, the equation above can be rewritten as

rq = HX(FK −GK)−HK +A(q)− δq + λγL+ [γ(LK −B)− g]λK . (39)

The following complementary slackness condition is satisfied under the optimal program

λ[γ(LK −B)− g] = 0. (40)

Because the complementary slackness condition must also be satisfied point-wise, the partial

derivative of the left side of Eq. (40) must be zero. This implies

λγL+ [γ(LK −B)− g]λK = λgK . (41)

Substituting Eq. (41) into Eq. (40) and multiplying through by K yields

rqK = HX(FKK −GKK)−HKK +KA(q)− δqK + λgKK. (42)

From Ito’s lemma and the optimality condition on I it follows that

KA(q)− δqK = A(qK)− qI = A(qK)−HX(I +GII). (43)
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Substituting Eq. (43) into Eq. (42) and invoking homogeneity of F and G (Assumption 1) yields

rqK = −HX(I +G− F )−HKK + λgKK +A(qK). (44)

From the definition of X, the equation above can be rewritten as

rqK = −HXX −HKK + λgKK +A(qK) +HX(b+ erB − g). (45)

Invoking homogeneity of H (Assumption 2), the equation above can be rewritten as

rqK = −H + λgKK +A(qK) +HX(b+ erB − g). (46)

The Bellman equation can be written in a symmetric form as

rS = −H +A(S). (47)

Subtracting Eq. (46) from Eq. (47) and rearranging terms yields

A(S − qK)− r(S − qK) = λgKK +HX(b+ erB − g). (48)

In the remainder of the derivation, subscripts denote time, not partial derivatives. Also, time is

normalized such that date zero is the present. Using Dynkin’s formula (Oksendal, Theorem

7.4.1), we have

E[e−rT (ST − qTKT )] = S0 − q0K0 +E
·Z T

0
e−rt[A(S − qK)− r(S − qK)]dt

¸
. (49)

The smooth-pasting conditions for optimal default are ST = qT = 0. Substituting the

smooth-pasting conditions and Eq. (48) in Eq. (49) yields

q0K0 = S0 +E

·Z T

0
e−rt[λgKK +HX(b+ erB − g)]dt¸ . (50)

Now make the following substitution

HX(b+ erB − g) = (HX − 1)(b+ erB − g)] + (b+ erB − g) (51)

and rearrange terms to obtain

q0K0 = S0 +E

·Z T

0
e−rtbdt

¸
+E

·Z T

0
e−rt[erB − g]dt¸+ (52)

E

·Z T

0
e−rt[λgKK + (HX − 1)(b+ erB − g)]dt¸ .
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The rest of the proof follows from substituting the following bond pricing identities into Eq. (52)

B0 ≡ E

·Z T

0
e−rt[erB − g]dt+ e−rTBT¸ , (53)

D0 ≡ E

·Z T

0
e−rtbdt+ e−rTDT

¸
, and (54)

LTKT = BT +DT .¥ (55)

Proof of Proposition 2.

The proof is similar to that of Proposition 1. For the purpose of the proof, let m ≡ SB.

Differentiating both sides of the Bellman equation with respect to B yields

rm = −HXXB +A(m) + qIB +mgB − λ(γ + gB) + [γ(LK −B)− g]λB. (56)

Using the optimality conditions, the equation above simplifies as

rm = −erHX − γλ+ [γ(LK −B)− g]λB +A(m). (57)

Differentiating the complementary slackness condition with respect to B yields

−γλ+ [γ(B − LK)− g]λB = λgB. (58)

Substituting the equation above into Eq. (57) yields

A(m)− rm = erHX − λgB. (59)

The rest of the proof follows from substituting the equation above and the smooth pasting

condition mT = 0 into Dynkin’s formula:

E[e−rTmT ] = m0 +E

·Z T

0
e−rt[A(m)− rm]dt

¸
.¥ (60)
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Appendix B

This appendix contains details of the data construction. Basic Compustat data variables are

defined as follows: Book assets are Compustat Item 6; gross capital stock is Item 7; investment is

the difference between Items 30 and 107; cash flow is the sum of Items 18 and 14; equity issuance

is Item 108 minus Item 115; total long-term debt is Item 9 plus Item 34; total dividends is Item

19 plus Item 21; stock of cash is Item 1; and sales is Item 12. Net debt is total long-term debt less

cash. Average Q is calculated as in Erickson and Whited (2000). The market-to-book ratio is

calculated as [(Item 6 + (Item 24)× (Item 25) − Item 60 − Item74)/Item 6].

The imputation of bond ratings using the method in Blume, Lim, and Mackinlay (1998) starts

with the computation of average interest coverage [(Item 178 + Item 15)/Item 15], the operating

margin (Item 13/Item 12), long-term debt leverage [(Item 34 + Item 9 + Item 104)/Item 6], the

natural log of the market value of equity deflated to 1978 by the Consumer Price Index

[(Item 24)× (Item 25)], beta, and standard error over the previous three to five years. Z scores

were then obtained by using the coefficients on these variables and year dummies. The final

imputed bond ratings were calculated by applying the cutoff values provided in Blume, Lim, and

Mackinlay (1998) to these Z scores.

Appendix C

This appendix derives the estimators used to construct Tables 3 and 4. To describe the basic

econometric framework, we rewrite Eq. (29) as

ỹ = χ̃β1 + ω̃β2 + vβ3 + u, (61)

where ỹ is the rate of investment, χ̃ is unobserved true Q, ω̃ is the interaction between χ̃ and

equity issuance, v is a vector including the other regressors, and u is a disturbance term.

The relation between χ̃ and its observed proxy ξ̃ can be written as

ξ̃ = χ̃+ e, (62)
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in which e is the measurement error in ξ̃. Let w̃ be the observed counterpart of ω̃, and let z be

equity issuance. Then Eq. (62) immediately implies

w̃ = ω̃ + ze. (63)

The regression disturbance, u, and the measurement error, e, are assumed independent of one

another and of (χ̃, ω̃, z) . The vector (χ,ω, z, u, e) is assumed to be independently and identically

distributed (i.i.d.).

To simplify computations, first partial out the perfectly measured variables in Eqs. (61)—(63)

and rewrite the resulting expressions in terms of population residuals. This yields

y = χβ1 + ωβ2 + u, (64)

ξ = χ+ e, and (65)

w = ω + ze. (66)

Here y ≡ ỹ − vµy, χ ≡ χ̃− vµx, y ≡ ỹ − vµy, ω ≡ ω̃ − vµw, ξ ≡ ξ̃ − vµx, and w ≡ w̃− vµw, with¡
µy, µx, µw

¢ ≡ [E (v0v)]−1E hv0 ³ỹ, ξ̃, w̃´i. By substituting the OLS estimates of ¡µy, µx, µw¢ into
Eqs. (64), (65), and (66), estimates of β, E

¡
u2
¢
, E

¡
e2
¢
, E

¡
χ2
¢
, E

¡
ω2
¢
, and E (χω) can be

obtained with the GMM procedure described in the next paragraph. Estimates of the j-th

element of β3 are obtained by substituting the GMM estimate of (β1,β2) and the j-th elements of

the estimates of
¡
µy, µx, µw

¢
into

β3j = µyj − µxjβ1j − µwjβ2j . (67)

An estimate of ρ2 ≡ 1− var(u)/ var(y), the population R2 for Eq. (61), is obtained by evaluating

ρ2 =
µ0y var(v)µy +E

¡
χ2
¢
β21 +E

¡
ω2
¢
β22 + 2β1β2 (χω)

µ0y var(v)µy +E (χ2)β
2
1 +E (ω

2)β22 + 2β1β2 (χω) +E (u
2)

(68)

at the OLS estimate of µy, the sample covariance matrix for v, and the GMM estimates of β1, β2,

E
¡
χ2
¢
, E

¡
ω2
¢
, E (χω), and E

¡
u2
¢
.

This model is nonlinear in the mismeasured regressor and cannot, therefore, be estimated via

methods designed for linear models, such as that in Erickson and Whited (2002). Nonetheless, in
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a manner similar to that in Erickson and Whited (2002), this model can be estimated using the

second and third moments of the observable variables. The first moment equation can be derived

by squaring both sides of Eq. (64), setting them equal to one another, and then taking

expectations of both sides. The result is:

E
¡
y2
¢
= 2β2β1E (χω) +E

¡
u2
¢
+ β21E

¡
χ2
¢
+ β22E

¡
ω2
¢
. (69)

The second moment equation can be derived analogously by multiplying Eq. (64) by Eq. (65) and

taking expectations of both sides:

E (yξ) = β2E (χω) + β1E
¡
χ2
¢
. (70)

Continuing in this fashion results in an overidentified system of 19 equations in 18 unknowns.

E
¡
y2
¢
= 2β2β1E (χω) +E

¡
u2
¢
+ β21E

¡
χ2
¢
+ β22E

¡
ω2
¢
, (71)

E (yξ) = β2E (χω) + β1E
¡
χ2
¢
, (72)

E (yw) = β1E (χω) + β2E
¡
ω2
¢
, (73)

E
¡
ξ2
¢
= E

¡
χ2
¢
+E

¡
e2
¢
, (74)

E (ξw) = E (χω) +E (z)E
¡
e2
¢
, (75)

E
¡
w2
¢
= E

¡
ω2
¢
+E

¡
z2
¢
E
¡
e2
¢
, (76)

E
¡
y2ξ
¢
= 2β2β1

¡
χ2ω

¢
+ β21

¡
χ3
¢
+ β22

¡
χω2

¢
, (77)

E
¡
yξ2
¢
= β1

¡
χ3
¢
+ β2

¡
χ2ω

¢
, (78)

E
¡
ξ2w

¢
= E (z)E

¡
e3
¢
+E

¡
χ2ω

¢
+ 2E (zχ)E

¡
e2
¢
, (79)

E
¡
ξw2

¢
= E

¡
χω2

¢
+ 2E

¡
e2
¢
E (zω) +E

¡
z2
¢
E
¡
e3
¢
+E

¡
z2χ

¢
E
¡
e2
¢
, (80)

E
¡
y2w

¢
= 2β2β1E

¡
χω2

¢
+ β22E

¡
ω3
¢
+ β21E

¡
χ2ω

¢
, (81)

E
¡
yw2

¢
= β2E

¡
ω3
¢
+ β1E

¡
χω2

¢
+ β1E

¡
z2χ

¢
E
¡
e2
¢
+ β2E

¡
z2ω

¢
E
¡
e2
¢
, (82)
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E (z) = E (z) , (83)

E
¡
z2
¢
= E

¡
z2
¢
, (84)

E (zξ) = E (zχ) , (85)

E (zw) = E (zω) , (86)

E (zy) = E (zχ)β1 +E (zω)β2, (87)

E
¡
z2ξ
¢
= E

¡
z2χ

¢
, and (88)

E
¡
z2w

¢
= E

¡
z2ω

¢
. (89)

The parameters to be estimated are β1, β2, E
¡
χ2
¢
, E

¡
u2
¢
, E

¡
ω2
¢
, E (χω) , E

¡
e2
¢
,

E
¡
χ2ω

¢
, E

¡
χ3
¢
, E

¡
χω2

¢
, E

¡
e3
¢
, E

¡
ω3
¢
, E (zχ) , E (zω) , E

¡
z2χ

¢
, E

¡
z2ω

¢
, E (z) , and

E
¡
z2
¢
. As in Erickson and Whited (2002), this model can be estimated by using GMM to pool

the information contained in the second- and third-order moments of the observable variables.

Because of the i.i.d. assumption, the system is estimated for each cross section. Pooled estimates

are then obtained by averaging the cross-sectional estimates over the sample period. Standard

errors are calculated using the method of Fama and MacBeth (1973).
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Fig. 1. Constrained and unconstrained investment. The horizontal axis measures investment,

i. The vertical axis measures the marginal cost of investment. The line labeled 1 + αi measures

the marginal cost of investing for an unconstrained firm, and the line labeled 1 + (α+ φ)i+ αφi2

is the marginal cost of investing for a constrained firm. The symbol q denotes a value of marginal

q greater than one. The parameter α > 0 determines curvature of the adjustment cost function,

and the parameter φ > 0 determines curvature of the external equity cost function. The two

levels of investment, i∗u and i∗c , are the optimal levels for an unconstrained and a constrained firm,

respectively.
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Fig. 2. Collateral constraint effects. The horizontal axis measures investment, i. The vertical

axis measures the marginal cost of investment. The line labeled 1 + (α+ φ)i+ αφi2 is the

marginal cost of investing for a constrained firm. The true value of marginal q for a constrained

firm is denoted as qc, and q
naive
c is an estimate of the marginal q that ignores the effect of

collateral on marginal q. The parameter α > 0 determines curvature of the adjustment cost

function, and the parameter φ > 0 determines curvature of the external equity cost function. The

optimal level of investment for a constrained firm is denoted i∗c , and inaivec is the level of

investment chosen if the collateral effect is ignored.
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Table 1
Summary statistics. Calculations are based on a sample of unregulated and nonfinancial firms from the annual 2004 Compustat
industrial files. The sample period is 1968 to 2003. Investment, cash flow, net debt, total debt, and equity issuance are all
scaled by the capital stock. Equity issuance is the size of the issue, conditional on actually issuing. Issuance incidence is the
fraction of observations with positive equity issuance. The capital stock figures are in millions of 1997 dollars. The WW index
is an index of financial constraints from Whited and Wu (2006), and the KZ index is an index of financial constraints from
Kaplan and Zingales (1997). Tobin’s q has been removed from the KZ index. For both indices higher numbers indicate a
greater likelihood both of needing external finance and facing costly external finance.

Equity Issuance
Sample Tobin’s q Investment Cash flow Net debt Total debt Capital stock issuance incidence
Full sample
Mean 2.490 0.163 0.226 0.386 0.785 440.138 0.254 0.179
Median 1.121 0.120 0.193 0.311 0.469 37.649 0.076 0.000
Equity issuers
Mean 5.874 0.240 0.269 0.102 0.849 235.371 0.254 1.000
Median 2.880 0.180 0.254 0.116 0.418 26.709 0.076 1.000
Equity nonissuers
Mean 1.751 0.146 0.216 0.448 0.771 484.828 0.000 0.000
Median 0.943 0.112 0.186 0.339 0.479 40.584 0.000 0.000
High WW index
Mean 2.448 0.161 0.173 0.468 0.946 20.812 0.319 0.202
Median 1.046 0.108 0.171 0.350 0.536 11.217 0.087 0.000
Low WW index
Mean 2.531 0.164 0.279 0.304 0.624 859.482 0.169 0.156
Median 1.185 0.129 0.209 0.290 0.430 150.269 0.065 0.000
High KZ index
Mean 1.793 0.159 0.114 0.927 1.134 336.212 0.254 0.176
Median 0.946 0.111 0.139 0.593 0.718 29.569 0.081 0.000
Low KZ index
Mean 3.186 0.166 0.338 -0.155 0.436 544.053 0.253 0.183
Median 1.374 0.128 0.254 0.042 0.271 48.597 0.071 0.000
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Table 2
Investment regressions: ordinary least squares estimates. Calculations are based on a sample of
unregulated and nonfinancial firms from the annual 2004 Compustat industrial files. The sample period
is 1968 to 2003. Regressions are run with both firm-specific and year-specific intercepts. Interaction
term indicates the interaction of Tobin’s q with the ratio of equity issuance to the capital stock. Its
expected coefficient sign is negative. Overhang correction is the imputed market value of lenders’
recovery claim in default normalized by the capital stock. Its expected coefficient sign is negative.
The WW index is an index of financial constraints from Whited and Wu (2006), and the KZ index is
an index of financial constraints from Kaplan and Zingales (1997). Tobin’s q has been removed from
the KZ index. For both indices higher numbers indicate a greater likelihood both of needing external
finance and facing costly external finance. The expected coefficient sign on these two variables is
positive. White (1980) standard errors are in parentheses under the parameter estimates.

∗
indicates

significance at the 10% level;
∗∗
indicates significance at the 5% level.

Tobin’s q Interaction term Overhang correction KZ WW Cash flow R2

0.0099
∗∗

-0.0006
∗∗

-0.2280
∗∗

0.0022
∗∗

0.1152
(0.0007) (0.0003) (0.0971) (0.0008)

0.0097
∗∗

-0.0006
∗∗

-0.1701
∗∗

0.2741
∗∗

0.1152
(0.0007) (0.0003) (0.0950) (0.0259)

0.0078
∗∗

-0.0005
∗

-0.2729
∗∗

0.0077
∗∗

0.0767
∗∗

0.1508
(0.0007) (0.0003) (0.0975) (0.0011) (0.0047)

0.0078
∗∗

-0.0005
∗

-0.1917
∗∗

0.0889
∗∗

0.0720
∗∗

0.1396
(0.0007) (0.0003) (0.0958) (0.0276) (0.0048)
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Table 3
Investment regressions: generalized method of moments estimates. Calculations are based on a sample
of unregulated and nonfinancial firms from the annual 2004 Compustat industrial files. The sample
period is 1968 to 2003. The regressions include both firm-specific and year-specific intercepts, and
they are estimated with the high-order moment, measurement-error consistent estimator described in
Appendix B. Interaction term indicates the interaction of Tobin’s q with the ratio of equity issuance to
the capital stock. Its expected coefficient sign is negative. Overhang correction is the imputed market
value of lenders’ recovery claim in default normalized by the capital stock. Its expected coefficient
sign is negative. The WW index is an index of financial constraints from Whited and Wu (2006),
and the KZ index is an index of financial constraints from Kaplan and Zingales (1997). Tobin’s q has
been removed from the KZ index. For both indices higher numbers indicate a greater likelihood both
of needing external finance and facing costly external finance. The expected coefficient sign on these
two variables is positive. Fama and MacBeth standard errors are in parentheses under the parameter
estimates.

∗
indicates significance at the 10% level;

∗∗
indicates significance at the 5% level.

Tobin’s q Interaction term Overhang correction KZ WW Cash flow R2

0.0387
∗∗

-0.0045
∗

-0.7661
∗∗

0.0171
∗∗

0.4333
∗∗

(0.0114) (0.0028) (0.2269) (0.0063) (0.1313)

0.0265
∗∗

-0.0037
∗

-0.4052
∗∗

0.1491
∗∗

0.3559
∗∗

(0.0047) (0.0020) (0.1643) (0.0569) (0.0759)

0.0275
∗∗

-0.0019 -0.7289
∗∗

0.0167
∗∗

0.0478
∗∗

0.4585
∗∗

(0.0061) (0.0019) (0.1795) (0.0023) (0.0244) (0.1368)

0.0202
∗∗

-0.0018
∗

-0.3965
∗∗

0.0782
∗

0.0622
∗∗

0.4670
∗∗

(0.0034) (0.0011) (0.1582) (0.0404) (0.0134) (0.0579)
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Table 4
Investment regressions: ordinary least squares and generalized method of moments estimates with alternative
constraint indicators. Calculations are based on a sample of unregulated and nonfinancial firms from the
annual 2004 Compustat industrial files. The sample period is 1968 to 2003. The regressions include both
firm-specific and year-specific intercepts, and they are estimated with ordinary least squares and the high-
order moment, measurement-error consistent estimator described in Appendix B. Interaction term indicates
the interaction of Tobin’s q with the ratio of equity issuance to the capital stock. Its expected coefficient
sign is negative. Overhang correction is the imputed market value of lenders’ recovery claim in default
normalized by the capital stock. Its expected coefficient sign is negative. The WW index is an index of
financial constraints from Whited and Wu (2006), and the KZ index is an index of financial constraints from
Kaplan and Zingales (1997). Tobin’s q has been removed from the KZ index. Cash flow has been taken out of
these indices. For both indices higher numbers indicate a greater likelihood both of needing external finance
and facing costly external finance. The expected coefficient sign on these two variables is positive. Fama
and MacBeth standard errors are in parentheses under the parameter estimates.

∗
indicates significance at

the 10% level;
∗∗
indicates significance at the 5% level.

Estimator Tobin’s q Interaction term Overhang ccrrection KZ WW Cash flow R2

OLS

0.0078
∗∗

-0.0005
∗

-0.2729
∗∗

0.0077
∗∗

0.0689
∗∗

0.1542
(0.0007) (0.0003) (0.0975) (0.0011) (0.0045)

0.0078
∗∗

-0.0005
∗

-0.1917
∗∗

0.0889
∗∗

0.0639
∗∗

0.1430
(0.0007) (0.0003) (0.0958) (0.0276) (0.0061)

GMM

0.0221
∗∗

-0.0015 -0.6953
∗∗

0.0142
∗∗

0.0537
∗∗

0.4394
∗∗

(0.0037) (0.0016) (0.1869) (0.0022) (0.0137) (0.0505)

0.0302
∗∗

-0.0048
∗

-0.4268
∗∗

0.0751
∗

0.0420
∗∗

0.4979
∗∗

(0.0075) (0.0028) (0.1713) (0.0399) (0.0140) (0.0678)
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